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The Wetting Transition in a Random Surface Model 
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We continue our analysis of the phase diagram of a discrete random surface, 
with no "downward fingers," lying above a flat two-dimensional substrate. The 
surface is closely related to the 2D Ising model and its free energy is exactly 
solvable in much (but not all) of the phase diagram. There is a transition at 
temperature Tw from a high-T infinite height or wet phase to a low-T finite 
height or partially wet phase. Previously it was shown that when a parameter 
b, related to the contact interaction, is positive, T w is independent of b and there 
is a logarithmic specific heat divergence as T~ is approached from either side. 
Here we show that for b<0,  Tw does depend on b and there is no thermo- 
dynamic singularity from the wet phase. The partially wet phases for b ~< 0 and 
b > 0  differ in the absence or presence of a monolayer covering the entire 
substrate; this results in a first-order transition across the line b = 0, T< Tw. 

KEY WORDS:  Wetting; random surface; Ising model; monolayer. 

1. I N T R O D U C T I O N  

In  this paper ,  we der ive  fu r the r  r i go rous  resul ts  on  the  phase  d i a g r a m  of  a 

s ta t i s t ica l  m e c h a n i c a l  m o d e l  (1'2) of  a r a n d o m ,  t w o - d i m e n s i o n a l  surface  

e m b e d d e d  in t h r e e - d i m e n s i o n a l  space. T h e  surface is f o r m e d  by j o i n i n g  

t o g e t h e r  a l o n g  the i r  edges  p l aque t t e s  f r o m  Z 3. T h e  f luc tua t ions  of  the  

surface  are  c o n t r o l l e d  by  surface  t ens ion  in a s ta t is t ical  m e c h a n i c a l  c a n o n i c a l  

t r e a t m e n t  wi th  inverse  t e m p e r a t u r e  ft. T h e  surface is fu r the r  res t r ic ted  by 

s u s p e n d i n g  it o v e r  a flat subs t r a t e  wi th  wh ich  it in teracts .  If  we th ink  of  the  

surface  as s e p a r a t i n g  two  coex i s t en t  bu t  immisc ib l e  phases ,  t hen  we are  

dea l ing  wi th  a m o d e l  wh ich  c o u l d  be r e l evan t  to the  we t t i ng  p h e n o m e n o n .  

I t  is genera l ly  felt on  the  basis  of  r e n o r m a l i z a t i o n  g r o u p  a r g u m e n t s  tha t  the 
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location and nature of the phase transition ought to depend on the nature 
of the substrate interaction/3) In our earlier results, we obtained a phase 
transition for the three-dimensional system precisely at the transition of a 
related planar Ising model, and with the same type of singularity for the 
free energy. Fortunately, this was only for part of the phase diagram. 
Although we have not been able to obtain critical exponents in the other 
part, we have proved that our model has an interaction-dependent transition 
curve there and furthermore that the free energy is nonsingular as that 
curve is approached from the wet region. 

Our model is unlike others to discuss wetting which feature the entropic 
repulsion idea of Fisher. (4'5) This repulsion comes from fingers which 
project below the surface and intercept the substrate. Our model does not 
have this feature, but entropic wandering enters in another way, at least 
implicitly. 

We would like to dedicate this work to J. K. Percus on the occasion 
of his 65th birthday. As well as making many contributions to the statistical 
mechanics of inhomogeneous systems, he established some inequalities (6) 
which enabled van Beiejeren (7) to make an important contribution to the 
theory of roughening in Ising models. 

2. M O D E L  A N D  RESULTS 

We have described the background to our model at length elsewhere/~2~ 
Here we will just describe its construction and discuss other new exact 
results on the phase diagram. In the following sections, precise statements 
of these results will be given along with their derivation. 

Let A be a finite subset of 2 2 , e.g., {(x, y): - n < ~ x ,  y<~n} .  For each 
r s A  define a height function h ( r ) s  7/. The fact that a phase-separating 
surface is described uniquely by such a height function is of course a 
restriction which eliminates overhangs and reentrants. (i) We set 

h(r) = 0 on 7/2\A (2.1) 

and (ii) since the surface is suspended over a flat substrate, we require 

h(r)>~0 on Z 2 (2.2) 

The energy of such a surface is a sum of two parts: first there is the 
surface tension r for each plaquette, which gives a contribution 

~ Ih(r ) -h(s) ]  + r A l  (2.3) 
(r ,s)  
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where (r, s )  denotes any nearest neighbor bond on 7/2. Here A~ is the 
number of plaquettes or faces of the surface which are parallel to the 
substrate; it is also the area of substrate in contact with molecules. The 
second contribution to the energy is simply a term 

- 8 1 A 1  = - ~ 1  2 1 (2.4) 
r:h(r)~0 

where ~ is the binding energy per molecule. The total Hamiltonian is thus 

H = z  ~ [h(r)-h(s)[  + ( z - ~ l ) A  1 (2.5) 
(r,s) 

(iii) To make progress, we further restrict the surface: 

h ( r ) - h ( s ) = 0 ,  +1 for each ( r , s )  (2.6) 

and a final restriction which disallows downward-pointing fingers: 
(iv) For every r 6 A  there is some nearest neighbor path to an 

r '6  7/2\A along which h(r) never increases. 
There is an alternative way of looking at this construction as a "raft" 

model given in Appendix B of ref. 2, which may help in visualizing the 
model. 

The point behind the restrictions is that the configuration space is 
isomorphic to that of the planar Ising model as expressed in the following 
result. 

P r o p o s i t i o n  2.1 .(1,2) For a finite A ~ 7/2 the height configurations 
h(r) [or hA(r)] satisfying (i)-(iv) are in one-to-one correspondence with 
the Ising model configurations {aA(r)= ___l:re7/2} with aA(r)= +1 for 
all r ~ Z2\A; hA(r) is identified as the minimum number of Peierls contours 
crossed, among all possible nearest-neighbor paths from r to 7/2\A. With 
this identification, and putting b = e I - z ,  we have 

b ~ [irA(r) + 1] (2.7) H= - b l A I - 2  <r.s> ~ [aA(r)OA(S ) -- 1] "~-~ r~C+(OA) 

where rA[ denotes the number of sites in A and C+(OA) denotes the plus 
spin cluster of ~A, the boundary of A; i.e., C+(OA)=A\A1, where 
A 1 = {r: hA(r) #0}.  

Evidently level sets of the surface are parallel spin clusters, establishing 
a useful connection with percolation ideasJ 8) 

The previously known results for this model are sketched in Fig. 1. 
For b>~0 and T~> To(2), the system is wet because the surface wanders 
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Fig. 1. Previously known results for the phase diagram. For b~>0 there is a transition at 
T =  To(2) from a partially wet to a wet phase. Tc(2), the solution of sinh[r/Tc(2)] = 1, is 
independent of b. As T--* To(2)+_, there is a logarithmic specific heat divergence. For b > 0 
and T <  T,,(2), the partially wet phase has a monolayer covering the entire substrate. For 
b ~< 0 and T <  To.(2), the system is partially wet with no monolayer. The physically relevant 
portion of the plane is b > -23,  to ensure stability against detachment from the substrate. 

away from the substrate: hA(r ) diverges as A - + Z  2. For any b and 
T<  To(2), there is partial wetting since (hA(r)) remains finite as A--, Z 2. 
The partially wet phase for b > 0 involves the presence of a monolayer. For 
b/> 0 and all T, the free energy is given by 

f(T, b)=f(T, O)-b (2.8) 

where f(T, 0) is the Onsager free energy. [-Note: In ref. 2, there is a missing 
minus sign in the equations for f numbered (2.7) and (2.8) there.] Thus, 
for b/> 0, the phase transition has a logarithmic specific heat singularity 
which is independent of b as the line T=  Tc(2) is approached from either 
side. 

Our new results are sketched in Fig. 2. It was known previously that 
for b < 0, the phase transition curve must lie above or on T =  To(2). One 
new result (see Propositions 3.6 and 4.4) is that this curve lies strictly 
above T =  To(2) and strictly within the b < 0  region (at least for T high 
enough). Thus the dependence on b is nontrivial in the b ~< 0 half-plane of 
the phase diagram. This is an important extension to previous results 
on this model since it is generally felt that a satisfactory theory of 
wetting ought to have an interaction-dependent transition and, moreover, 
interaction-dependent critical exponents. (3) Unfortunately, we are unable 
yet to shed any light on the latter point. 
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Fig. 2. New results for the phase diagram. The partially wet phase extends at least up to the 
line {T=T,(2)(1-b/[4z]), b<0} and the wet phase extends strictly into the region 
{ T> To(2), b < 0}. The free energy approaches the wetting transition curve analytically from 
the wet side. It has a discontinuous b-derivative at the line {T< T~.(2), b=0} due to the 
appearance of a monolayer. 

A second new result (see Proposition 5.1) is that (2.8) remains valid 
in the entire wet regime for b < 0. This, combined with the fact that the 
wetting temperature is strictly above T,,(2), has the important  consequence 
that for b < 0, there is no singular behavior of the free energy as the wetting 
transition curve is approached from the wet regime. The free energy is not 
given by (2.8) in the partially wet, b < 0  regime; indeed, we show (see 
Proposition 5.2) that there is a first-order transition, corresponding to the 
appearance of a monolayer as the line b =  0, T <  Tc(2) is crossed. As a 
byproduct  of our main results, we also obtain an inequality relating two 
critical exponents at the point b = 0, T =  T,.(2) (see Proposition 5.3). 

3. P A R T I A L L Y  W E T  P H A S E  

In this section, we give results for the partially wet phase with b < 0. 
First we state a result of Jogdeo (9) about F K G  inequalities. A collection of 
random variables (or their joint probability distribution) is said to have the 
F K G  property (1~ (or, equivalently, is called associated (H)) if increasing 
functions of the variables are always positively correlated. 

P r o p o s i t i o n  3.1 .(9) Consider discrete random variables N; and Mj 
and express the probability of the joint configuration (n, m) in the usual 
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way as #(n) v(ml n), the product of a marginal and a conditional probability. 
Suppose that: 

1. # has the F K G  property (in n). 

2. For each n, v(mln) has the FKG property (in m). 

3. As n increases, v(.I n) is stochastically increasing; i.e., the v-average 
of an increasing function of m increases as n increases. 

Then {N, M} has (jointly) the FKG property. 

Proposition 3.2. Take the plus-boundary-condition Ising model 
as defined in Proposition 2.1 of the previous section, but with the 
Hamiltonian (2.7) replaced by 

"E 

H = - ~  ~ [ o - ( r ) o ( s ) - l ] - h  ~ [ o ( r ) + l ]  (3.1) 
<r,s> r ~ A  

with any real h. Define 

10 for r ~ C+(c~A) 
N, = otherwise 

(3.2) 

O if or(r)= +1, r e A \ C + ( ~ A )  
Mr = otherwise (3.3) 

Then (M, N) satisfy the hypotheses of Proposition 3.1. 

Proof. Condition 1 is true because each Nr is an increasing function 
of {a(s): s ~ A ). Thus the condition follows from the usual F K G  inequalities 
for the spins) 1~ Condition 2 is true because given any n and hence given 
A1 = A \C+ (~A) and its interior L~ = A 1\ {r ~ A l: r is a nearest neighbor of 
some s in 7/2\A1}, the conditional distribution of {~r(s): s~ LA} is that of 
a minus-boundary-condition Ising model. Each Mr is a decreasing function 
of these minus-boundary-condition spin variables and hence they have the 
F K G  property. (See Appendix A of ref. 2 for more details in similar 
arguments.) To prove the validity of condition 3, we must show that the 
Mr increase stochastically if n increases. First, increasing n decreases L A 

deterministically, which forces certain Mr, not formerly zero, to vanish. 
Now consider M,  for r in the new (and smaller) LA. These are functions 
of a minus-b.c. Ising model in a smaller region than before. But a minus-b.c. 
Ising model in a region L A stochastically decreases a s  L A decreases by the 
F K G  property of the spins (since some fields must have been reduced to 

- m). Since the Mr's are decreasing functions of these spin variables, they 
are stochastically increasing a s  L A decreases, which completes the proof. 
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P r o p o s i t i o n  3.3. For a given A and inverse temperature f i= l/T, 
let (-)~,b and (-)~,h denote the thermal averages for the two plus-b.c. 
Ising models with respective Hamiltonians given by (2.7) and (3.1). For 
both cases define Mr and Nr as in (3.2)-(3.3). If h>~0, then 

(f~)~*h ~< (f~)~,-ah (3.4) 

for any increasing function f l  of (M, N). 

Proof. Let us denote by P~,0 and P~*h the Gibbs distributions for the 
spin variables with these two Hamiltonians. When h = 0 = b, P~,o and P/~*o 
are both just the zero-field Ising-model Gibbs distribution. We have 

P,, 2h=Cx exp(2fih ~ Nr) P~,o (3.5) 
r~A 

P~,h=C2exp[2fih~ (Nr-M,)]P~, o (3.6) 
r~A 

and so 

(fl)~,_2h=Iflexp(2flh~M~));,h//Iexp(2flh~M~));,h (3.7) 

By Propositions 3.1 and 3.2, we have for h >~ 0 that 

If, exp(2flh~Mr))],h>~(f,)~,h(exp(2flh~Mr))~ih (3.8) 

from which (3.4) follows. 

P r o p o s i t i o n  3 .4 .  (~2,~3) I fh~>0,  then 

* (3.9) <f2 )~,0 ~< (f2)2r~/(2~+h),h 

for any increasing function f2 of {a(r): r s A }. 

Proof. 

(exp{0 E<r,s~ [a(r)  + a(s) - aft) a(s)]  })Pr (3.10) 
Pz*B/(2T+h),h = (exp{0 ~"(r.s) [a(r) + a(s) - a(r) a(s)]  } )~,o 

with 0 = flhz/2(2z + h). Now o-(r) + a ( s ) -  a(r) a(s) is increasing in the 
{a(r')}. So is exp{0 ~2<,,s> [a(r)  + ~r(s) - a(r) a(s)]  } because 0 >~ 0. Hence 
the desired result follows from the F K G  property of P~,o. 
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Propos i t ion  3.5. If b~<0, then 

(g)~,o>~ (g)4T3/(4~ b),b (3.11) 

for any increasing function g of {hA(r)}. 

Pgoof. The only difficulty arises through having a function of {hA(r)} 
rather than one which depends only on {Nr}. From Proposition 3.4, the 
zero-height region is stochastically bigger for P4r3/(4 z b),b than for P~.o- But 
given the zero-height region C + (~?A) = A \A1, the conditional distribution 
of the {a(r): r ~ A1 } and thus of {ha(r): r e A 1 }, the heights in the nonzero 
height region, is the same for the two measures; this distribution of heights 
is that of { l+hA~(r ) : r sA1 } from the A 1 version of P~,0. But from 
Proposition A1 of ref. 2, these heights stochastically decrease as A1 
decreases. Thus the heights for all r ~ A from P4~B(4~ /~),b are stochastically 
smaller than those from P~,o as desired. 

We use the last proposition to compare a point (/3, b) in the left half- 
plane with /?</3c and Ibl sufficiently large to a partially-wet point (/3, 0) 
with/3 >/3c. This immediately yields the following result. 

Proposit ion 3.6. The wetting transition curve in the left half-plane 
must lie above the curve 

/3 = 4/~cr/(4~- b) (3.12) 

i.e., the heights hA(r) remain bounded as A-~ 2 2 if b < 0 and 

~r,< re(2) 1 - ~  (3.13t 

4. WET PHASE 

In this section, we give results for the wet phase with b < 0. 

Proposit ion 4.1. Forany/~</3c,  realb, and An --, 7/z: iffor every r, 

P#,b(hA~ = O) ~ 0 

then for any s and any k 

P~,b(hA,(S) >1 k)  ~ 1 

i.e., hA,(S) --* +oo as n --* oo. 

Proof. 
for {hA.(r)} 

as n --* oo (4.1) 

as n ~  oo (4.2) 

Let L,  = LAn denote the interior of the positive height region 
[as in Eq. (A.2) of ref. 2]. Limit (4.1) implies that L,--* ~2 as 
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n ~  oo. But conditional on Ln, {hA~(S): s e L , }  for the given fl and b has 
the same distribution as { l + h L , ( s ) : s s L , }  for some /~ and b=0 .  The 
proof is completed by noting that Theorem II-3 of ref. 2 with b = 0 states 
that hz,(s) ~ +oo as Ln---rZ 2. 

In the next proposition, we compare the P~,b distribution to the distribu- 
tion Pp for independent spin variables {a(r)} with Pp(a(r)= + l ) = p  for 
each r. The average for these variables is denoted (- >p. The Pp is the same 
as P~,h in the l imi t /3=0  and p = ( l + e  2flh)--l. 

Proposition 4.2. For any/~, b ~< 0, finite A c Z 2, and r e A, 

and 

(e ~blC+l>~,o~<<e ~alc+l>p (4.3) 

P~,b(hA(r) = 0) ~< (e -~blc+l lr~c+ >p (4.4) 

where C+ = C+(•A) as usual denotes the plus-spin cluster within A which 
reaches the boundary of A, and 

Pp(a(r) = + l ) = p =  1/(1 +e -4Br) (4.5) 

Remark. The critical value for independent-site percolation in Z 2 is 
strictly greater (14) than 1/2. Thus, for sufficiently small fl, the p given by 
(4.5) is below the threshold for plus-spin percolation. 

Proof of Proposition 4.2." 

<e ~blC+ilr~c+ >/~*~ ( e-~blc+ll >~,0 (4.6) P~,b(hA(r)=O)= (e_~blc+l >,o r~c+ 

for b ~< 0. But, for f any increasing function of the spin variables in A, 

<f>~,0 ~< (f>p (4.7) 

with p given by (4.5). This can be obtained as a limiting case of Proposi- 
tion 3.4 of the last section; it was also derived as Eq. (5.12) of ref. 2 [except 
that an incorrect version of (4.5) is given there]. Since for b~<0, e -blc+l 
and e btc+l lr~c + are increasing functions of the spins, we obtain (4.3) and 
(4.4), as desired. 

Proposition 4.3. Let An denote the square { - n , - n +  1 ..... n} • 
{ - n ,  - n  + 1,..., n}; let Cn = C+(3An) and let Pc denote the critical value 
for independent-site percolation in Z 2. For any P<Pc, there is some 
positive B(p) so that for - /~(p)  < 6 ~< 0, 

]A,p-llog<e btc~l>p~0 as' n ~ o o  (4.8) 
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and for any fixed r, 

(.e-61C"llrec.)p--*O as n -ooo  (4.9) 

Romarks. Since the averages in (4.8) and (4.9) are clearly increasing 
in p, it follows that B(p) can be chosen to be decreasing. The proposition 
and proof remain valid if A~ is replaced by a sequence of regions tending 
to 7/2 such that IOA,I = O(dist(0, ~3A,)). For  the validity of (4.8), one only 
needs I~Anl/IA,I ~ 0 .  

Proof o[ Proposition 4.3. Our argument will be based on the 
fact (15'16) that C(0), the plus cluster at the origin (in all of 7/2), has 

ep(I C(0)l/> k) ~< e-=k (4.10) 

for some c~ = ~ (p )>  0 when p < p~. We begin with the bounds 

( e -51C"1 l ~ c . )  <. eibiunpp(r ~ Cn) + ( e -blC~ 1 Ic, I >.~ )p 

Pp(r ~ C.) <. Pp(lC(r)l >1 n - Irl) (4.11) 

(e  -~lc, i 11c, L > ~ )p ~< e-'"~ ( e(Ibl + t)lc.I )p 

where u > 0 will be specified later. To control IC, l, we note that by expressing 
it as a union of distinct clusters in A, which reach 8A,, each of which is 
smaller than C(r) for some r in etA,, it is easily seen that one has the 
stochastic inequality 

[C~] <~ ~ Y~ (4.12) 
i = 1  

where Y~, Y2 .... are independent random variables with the same distribution 
as IC(0)[. Thus, by (4.10), 

and 

where 

(, e -~1c"1 ) p <~ e 8"f(l~l) (4.13) 

(e  -51c.I 1,~c,)p = O(e (161u- ~ + e ESfCl61 + t)-'~]n) (4.14) 

ef(t)=(etiC(~ for t<ct  (4.15) 

Clearly (4.8) follows if J/~l<c~. Since f ( t ) = O + f ' ( O ) t + O ( t 2 ) ,  we may 
choose 

u > 8f'(0) = 8E(JC(0)i) (4.16) 
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and then t sufficiently small to that 8 f ( t ) -  tu < 0. Then we have for small 
enough Ib[ that both 1/)] u -  c~ and 8 f ( f l  + t ) -  tu are negative. This yields 
(4.9) as desired. 

Combining the three last propositions, we have the following result. 

P r o p o s i t i o n  4.4. Let A, be as in Proposition 4.3. There is a function 
B(T) which is strictly positive for large T; in particular, if 

T >  4~/log [ PlUmp ~] (4.17) 

such that for fl = lIT and - B(T) < b < 0, the following are valid as n --* oe : 

]An[-1 log(e flb[C+[)~,0---~0 (4.18) 

( I f +  I/IA, I )a,b -~ 0 (4.19) 

and for any fixed site s, 

in the sense of (4.2). 

Proof. We take 

hA,(S)--' +oe (4.20) 

1 
B(T)=  T/~(1 .jf_~4"c/T) (4.21) 

where B(p) is as in Proposition 4.3. Then (4.18) and (4.20) follow 
immediately from the pevious propositions. To obtain (4.19), we note that 
the left-hand side of (4.18) is a convex function of b which converges to 
zero on ( - B ,  0). It follows that its derivative, which is - f l  times the right- 
hand side of (4.19), also converges to zero on ( -B ,  0). 

Remark. The proof of Proposition 4.3 shows that for the validity of 
(4.8) [but not necessarily of (4.9)] it suffices to take /3 in (-c~, 0], where 

= c~(p) is given in (4.10). Thus (4.18) and (4.19) will be valid if 

1 
- b <  Tc~( 1 ..~_ e'~--4-~/7;) (4.22) 

This gives an upper bound for the wetting temperature for b<0 .  From 
(4.17) and the numerical value (17) pc~0.59, we see that this yields the 
rather weak bound 

4~ 
Tw ~< ~ 11.0r as b --* 0 - (4.23) 

log[pc/(1 - Pc)] 
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This may be contrasted with the lower bound from (3.!3), 

Tw>~ Tc(2)~ 1.13z as b - , 0 -  (4.24) 

Presumably To(2) is the correct limiting value, but this has not been 
rigorously proved. It is not physically meaningful to compare the upper 
and lower bounds of (4.22) and (3.13) for very large negative b, since there 
is a physical requirement that b > - 2 r  (to ensure stability against detachment 
from the substrate; see ref. 1). 

5. CONCLUSIONS 

In our wetting model with Hamiltonian (2.5) or equivalently (2.7), the 
free energy as a function of T =  1/~ and b = E 1 - -  "C is 

f (T ,b )=f (T ,O) -b -  T lim IAnl-llog(e-~blc~ (5.1) 
n ~ o o  

Here f(T, 0) is the Onsager free energy for the Hamiltonian (2.7) with 
b = 0, ( .)~,0 is the thermal average for this zero field plus b.c. Ising model 
in the region A~ c 7/2, C, = C+(OA,) is the zero height (or dry) portion of 
A, and we take A~ to be the sequence of squares { - n  ..... n } x { -n,..., n }. 

In ref. 2, it was shown that 

f (T,b)=f(T,O)-b for b~>O (5.2) 

Thus, as the wetting transition curve 

Tw(b)=Tc(2 ) for b~>0 (5.3) 

is approached from either the partially wet phase I T <  To(2)] or from the 
interior of the wet phase I T >  Tc(2)], there is a thermodynamic singularity 
in the free energy behavior. Both the independence of Tw on b and the 
singularity from the high-temperature side are not expected for ordinary 
wetting transitions. (3~ The results from the last two sections show that 
neither of these phenomena occurs for b < 0. In order to state this conclusion 
as a formal proposition, we first define (for b < 0) 

T~(b)=inf{T': lira (At/IA,I)~,b=I foral l  f l < l / T ' }  (5.4) 
n ~ o o  

Proposition 5.1. For b<0, 

(b) Tc(2)<To(2) 1 - ~ z  ~<Tw(b)<oo (5.5) 
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Furthermore, 

f ( T , b ) = f ( T , O ) - b  for b < 0  and r ) r w ( b  ) (5.6) 

ProoL (5.4) follows immediately from the results of Sections 3 and 4 
and the fact (2) that for b = 0  and T <  T~(2), 

lim (A~/IA.[)a,b= 1 - lim (ICnt/IA.[)a,b = 1 - Pa, o ( H ( 0 ) = 0 ) <  1 
n ~ o o  n ~ o ~  

(5.7) 

[here H(0) = lim hA.(0)]. To obtain (5.6), we claim that it suffices to show 
that if/~ and bo < 0 are such that 

lim ([Cnl/An)r (5.8) 
n ~ o c  

it follows that 

lim [An[-1 log(e-Sic,  i )p*o = O 
n ~ o ( ?  

for /~bo </~ < 0 (5.9) 

To see why this suffices, note first that it would imply that Tw(b) is a 
nondecreasing function of - b  and second that, by continuity of f,  we then 
need only prove (5.6) in the interior of {b <0,  T)Tw(b)}.  By convexity, 
for/~bo </S < 0, 

d Ic, I )~ ,o  t=~lb01 0~<]og(e ~lc'l)~,0~< Ibl ~ l o g ( e '  = tbl (IC~l >~,b0 (5.10) 

Thus, (5.8) implies (5.9), as desired, which completes the proof. 
The formula (5.6) for the free energy ceases to be valid in the b < 0, 

partially wet region of the phase diagram. This is because, by standard 
convexity arguents, lim (A 1/IAn l} ~,b must fall in between the two one-sided 
derivatives, - (0f/~b)( T, b - ) and - (~3f/~b) ( T, b + ); hence the limit cannot 
be strictly below 1 if (5.6) is valid. The next proposition points out in 
particular that Of/c3b has a jump discontinuity along the line b = 0 ,  
T <  To(2). On the b > 0  side of this line, even though the surface heights 
remain finite (and we thus have called this region partially wet), it differs 
from the b ~ 0 side of the line by the presence of a monolayer covering the 
entire substrate. 

P r o p o s i t i o n  5.2. Along the line b = 0 ,  T <  Tc(2), 

0f(T, 0 + ) =  1, ~f -a-b ~-~ (T, 0 - )  < 1 (5.11) 

8 2 2 / 6 3 / 5 - 6 - 2 0  
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Proof. The derivative at 0+  follows from (5.2). By our previous 
discussion and the results of Section 3 of ref. 2, we have 

~f -0--~ T(0,-)~<,~lim (A~/ IA , ] )a ,o=I-Pa ,  o(H(O)=O ) (5.12) 

where H(0) denotes lim hAn(O ). The probability of zero height, 
Pa, o(H(O) = 0), is just the plus-cluster percolation density, which is strictly 
positive (8) for T <  To(2). 

We conclude this section with a critical exponent inequality which 
follows from Proposition 3.5. We define the surface height order parameter, 

O(T, b) = sup (hA(0))a, b (5.13) 
A 

and then critical exponents q and q' by assuming 

0(T, 0) ~ (Tc(2) -  T) -q as TT To(2) (5.14) 

0(To(2), b ) ~  bbl--q' as b]'0 (5.15) 

In ref. 2, it was shown that q ~< 1/8, or more precisely, 

O(T,O)<~const.(T~(2)-T) 1/8 for T<Tc(2)  (5.16) 

P r o p o s i t i o n  5.3. q' <~q <~ 1/8, or more precisely, 

O(Tc(2),b)<.O l_b/(4z),O ~<const.\4~-~- j for b < 0  

(5.17) 

Proof. This is an immediate consequence of Proposition 3.5 by taking 

4z/~/(4~ -/~) = 1/Tc(2) and g = hA(0) 

Remark. One should consider exponents q(b) and q'(b) defined all 
along the transition curve Tw(b) by 

O(T, b) ~ (Tw(b)-  T) -q(b) as TT rw(b) (5.18) 

O(Tw(b) ,b ' )~(b-b ' )  -q'(b) as b"[b (5.19) 

Our previously defined q and q' are of course just q(0) and q'(0). For 
b, b' > O, O(T, b) = 1 + O(T, 0), while 0(To(2), b') = oo. (2) Hence, for b > 0, 
q'(b) is undefined (or else it is + oo), while q(b)=q(0). Unfortunately, we 
have no results to report on these critical exponents for b < 0. 
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